Search results for "Energy drift"

showing 1 items of 1 documents

Self-consistent field theory based molecular dynamics with linear system-size scaling

2012

We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented …

PhysicsChemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceField (physics)Linear systemBorn–Oppenheimer approximationGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesComputational Physics (physics.comp-ph)Langevin equationMolecular dynamicssymbols.namesakePhysics - Chemical PhysicssymbolsLinear scaleEnergy driftStatistical physicsPhysical and Theoretical ChemistryPhysics - Computational PhysicsScaling
researchProduct